A numerical study on the finite element solution of singularly perturbed systems of reaction-diffusion problems

نویسندگان

  • Christos Xenophontos
  • Lisa Oberbroeckling
چکیده

We consider the approximation of singularly perturbed systems of reaction–diffusion problems, with the finite element method. The solution to such problems contains boundary layers which overlap and interact, and the numerical approximation must take this into account in order for the resulting scheme to converge uniformly with respect to the singular perturbation parameters. In this article we conduct a numerical study of several finite element methods applied to a model problem, having as our goal their assessment and the identification of a high order scheme which approximates the solution at an exponential rate of convergence, independently of the singular perturbation parameters. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh

We consider the numerical solution, by a Petrov–Galerkin finite-element method, of a singularly perturbed reaction–diffusion differential equation posed on the unit square. In Lin & Stynes (2012, A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 50, 2729–2743), it is argued that the natural energy norm, associated with a standard Galerk...

متن کامل

An hp finite element method for singularly perturbed systems of reaction- diffusion equations

We consider the approximation of a coupled system of two singularly perturbed reaction-diffusion equations by the finite element method. The solution to such problems contains boundary layers which overlap and interact, and the numerical approximation must take this into account in order for the resulting scheme to converge uniformly with respect to the singular perturbation parameters. We pres...

متن کامل

The hp finite element method for singularly perturbed systems of reaction-diffusion equations

We consider the approximation of a coupled system of two singularly perturbed reaction-diffusion equations by the finite element method. The solution to such problems contains boundary layers which overlap and interact, and the numerical approximation must take this into account in order for the resulting scheme to converge uniformly with respect to the singular perturbation parameters. We pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 187  شماره 

صفحات  -

تاریخ انتشار 2007